
A new proof of Morley’s theorem∗

par Alain Connes∗∗

It is now 22 years since IHÉS offered me its hos-
pitality. I have learnt there most of the mathematics
I know, mostly thanks to impromptu lunch conversa-
tions with visitors or permanent members.

When I arrived, I was engrossed in my own work
and had the humbling experience of finding out how
little I understood of what was currently discussed.
Dennis Sullivan took care of me, and gave me a
crash course in geometry which influenced the way
I thought for the rest of my life.

It is also in Bures, thanks to the physicists that I

understood the truth of the statement of J. Hadamard
on the depth of the mathematical concepts coming
from physics:

“Not this short lived novelty which can too often
only influence the mathematician left to his own de-
vices, but this infinitely fecund novelty which springs
from the nature of things.”

In order to give some flavor of the atmosphere of
friendly competition caracteristic of IHÉS, I have cho-
sen a specific example of a lunch conversation of this
last spring which led me to an amusing new result.

Figure 1.

Around 1899, F. Morley proved a remarkable the-
orem on the elementary geometry of Euclidean trian-
gles:

“Given a triangle A, B, C the pairwise intersec-
tions α, β, γ of the trisectors form the vertices of an
equilateral triangle” (cf. Fig. 1).

One of us mentioned this result at lunch, and
(wrongly) attributed it to Napoleon. Bonaparte had
indeed studied mathematics at an early age, and, be-
sides learning English, was teaching mathematics to
the son of Las Cases during his St Helen’s exile in
Longwood.

It was the first time I heard about Morley’s result
and when I came back home, following one of the ad-
vices of Littlewood, I began to look for a proof, not
in books but in my head. My only motivation besides
curiosity was the obvious challenge “This is one of
the rare achievements of Bonaparte I should be able
to compete with”. After a few unsuccessful attempts
I quickly realized that the intersections of consecutive
trisectors are the fixed points of pairwise products of
rotations gi around the vertices of the triangle (with
angles two thirds of the corresponding angles of the
triangle). It was thus natural to look for the three fold
symmetry g of the equilateral triangle as an element of
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the group Γ generated by the three rotations gi. Now,
it is easy to construct an example (in spherical geom-
etry) showing that Morley’s theorem does not hold
in NonEuclidean geometry, so that the proof should
make use of special Euclidean properties of the group
of isometries.

I thus spent some time trying to find a formula for
g in terms of gi, using the easy construction (any isom-
etry with angle 2π/n, n ≥ 2 is automatically of or-
der n), of plenty of elements of order 3 in the group Γ,
such as g1g2g3. After much effort I realized that this
was in vain (cf. Rem. 2 below) and that the relevant
group is the affine group of the line, instead of the
isometry group of the plane.

The purpose of this short note is to give a concep-
tual proof of Morley’s theorem as a group theoretic
property of the action of the affine group on the line. It
will be valid for any (commutative) field k (with arbi-
trary characteristic, though in characteristic 3 the hy-
pothesis of the theorem cannot be fulfilled). Thus we
let k be such a field and G be the affine group over k,

in other words the group of 2 × 2 matrices g =

[
a b
0 1

]

where a ∈ k, a � 0, b ∈ k. For g ∈ G we let,

δ(g) = a ∈ k∗. (1)

By construction δ is a morphism from G to the multi-
plicative group k∗ of non zero elements of k, and the
subgroup T = Ker δ is the group of translations, i.e.
the additive group of k. Each g ∈ G defines a transfor-
mation,

g(x) = ax + b ∀x ∈ k, (2)

and if a � 1, it admits one and only one fixed point,

fix (g) =
b

1 − a
· (3)

Let us prove the following simple fact:

Theorem. Let g1, g2, g3 ∈ G be such that g1g2,
g2g3, g3g1 and g1g2g3 are not translations and let
j = δ(g1g2g3). The following two conditions are
equivalent,

a) g3
1g

3
2g

3
3 = 1.

b) j3 = 1 and α+ jβ+ j2γ = 0 where α = fix(g1g2),
β = fix(g2g3), γ = fix(g3g1).

Proof. Let gi =

[
ai bi

0 1

]
. The equality g3

1g
3
2g

3
3 = 1 is

equivalent to δ(g3
1g

3
2g

3
3) = 1, and b = 0, where b is

the translational part of g3
1g

3
2g

3
3. The first condition is

exactly j3 = 1. Note that j � 1 by hypothesis. Next
one has

b =
(
a2

1 + a1 + 1
)

b1 + a3
1

(
a2

2 + a2 + 1
)

b2

+ (a1a2)3
(
a2

3 + a3 + 1
)

b3. (4)

A straightforward computation, using a1a2a3 = j
gives,

b = − ja2
1a2(a1 − j)(a2 − j)(a3 − j)

(
α + jβ + j2γ

)
,

(5)

where, α, β, γ are the fixed points

α =
a1b2 + b1

1 − a1a2
, β =

a2b3 + b2

1 − a2a3
, γ =

a3b1 + b3

1 − a3a1
·
(6)

Now, ak− j � 0 since by hypothesis the pairwise prod-
ucts of g j’s are not translations. Thus, and whatever
the characteristic of k is, we get that a)⇔ b).

Corollary. Morley’s theorem.

Proof. Take k = C and let g1 be the rotation with cen-
ter A and angle 2a, where 3a is the angle BAC and
similarly for g2, g3. One has g3

1g
3
2g

3
3 = 1 since each

g3
i can be expressed as the product of the symmetries

along the consecutive sides. Moreover for a similar
reason α = fix(g1g2), β = fix(g2g3), y = fix(g3g1) are
the intersections of trisectors. Thus from a)⇒ b) one
gets α + jβ + j2γ = 0 which is a classical characteri-
zation of equilateral triangles.

Remark 1. Without altering the cubes g3
1, g3

2, g3
3 one

can multiply each gi by a cubic root of 1, one obtains
in this way the 18 nondegenerate equilateral triangles
of variants of Morley’s theorem.

Remark 2. We shall now show that in general the ro-
tation g which permutes cyclically the points α, β, γ
does not belong to the subgroup Γ of G generated by
g1, g2, g3. Under the hypothesis of the theorem, we
can assume that the field k contains a non trivial cubic
root of unity, j � 1, and hence that its characteristic is
not equal to 3. The rotation which permutes cyclically
the points α, β, γ is thus the element of G given by,

g =

[
j b
0 1

]
, 3b = (1 − j) (α + β + γ). (7)

Now for any element g =
[
a b
0 1

]
, of the group Γ gen-

erated by g1, g2, g3, one has Laurent polynomials Pi,
in the variables aj such that,

b = b1P1 + b2P2 + b3P3. (8)
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Thus, expressing, with the above notations, bi in terms
of α, β, γ,

b1 = (1 + j)−1
(
a−1

3 (a3 − j)α (9)

−(a1 − j)β + a1(a2 − j)γ)

b2 = (1 + j)−1 (a2(a3 − j)α

+a−1
1 (a1 − j)β − (a2 − j)γ

)
b3 = (1 + j)−1 (−(a3 − j)α

+a3(a1 − j)β + a−1
2 (a2 − j)γ

)
,

we get Laurent polynomials Qi such that,

b = (a3 − j)αQ1 + (a1 − j)βQ2 + (a2 − j)γQ3. (10)

We can thus assume that we have found Laurent poly-
nomials Qi such that for any a1, a2, a3 ∈ k∗, with
a1a2a3 = j, and any α, β, γ ∈ k with α+ jβ+ j2γ = 0,
the following identity holds,

(1 − j)(α + β + γ) = 3 ((a3 − j)αQ1

+(a1 − j)βQ2 + (a2 − j)γQ3) . (11)

We then choose a1 = j, a2 = j, a3 = j2, α = 0,
β = − j, γ = 1, and get a contradiction. Passing to a
function field over k, this is enough to show that, in
general, g � Γ.

* * * * * * * * * * * * * * * * * * * * * *


