Algebraic varieties over \mathbb{F}_1

Christophe Soulé

Define a gadget over \mathbb{F}_1 to be the pair $X = (\mathcal{X}, \mathcal{A}_X)$ where \mathcal{X} is a covariant functor from the category \mathcal{F} of finite abelian groups to the category of sets, and \mathcal{A}_X is a complex algebra. Given a finite abelian group μ, a point $x \in \mathcal{X}(\mu)$, and a multiplicative map σ from μ to the multiplicative group of non zero complex numbers, we assume given a character, called evaluation

$$e_{x, \sigma} : \mathcal{A}_X \to \mathbb{C}.$$

If $f : \mu' \to \mu$ is a morphism in \mathcal{F} and if $y \in \mathcal{X}(\mu')$, the following equality is supposed to be satisfied:

$$e_{f(y), \sigma} = e_{y, \sigma \circ f}$$ \hspace{1cm} (1)

for any morphism $\sigma : \mu \to \mathbb{C}^*$.

An affine variety V over \mathbb{Z} defines a gadget over \mathbb{F}_1 by letting $\mathcal{X}(\mu)$ be the set of points of V in the group algebra of μ and by defining the algebra \mathcal{A}_X to be the ring of regular functions on the complex points of V (with the obvious evaluation maps).

A morphism $\varphi : X \to Y$ between two gadgets over \mathbb{F}_1 consists of a natural transformation $\varphi : \mathcal{X} \to \mathcal{Y}$ and a morphism of algebras $\varphi^* : \mathcal{A}_Y \to \mathcal{A}_X$ compatible with evaluation maps. It is called an immersion when both φ and φ^* are injective.

An affine variety over \mathbb{F}_1 is a gadget X such that:
- For every μ in \mathcal{F} the set $\mathcal{X}(\mu)$ is finite;
- The complex algebra \mathcal{A}_X is a commutative Banach algebra;
- There exists an affine variety $X_\mathbb{Z}$ over \mathbb{Z} and an immersion $i : X \to X_\mathbb{Z}$ of gadgets satisfying the following property:
 for any affine variety V over \mathbb{Z} and any morphism of gadgets $\varphi : X \to V$, there exists a unique algebraic morphism
 $$\varphi_\mathbb{Z} : X_\mathbb{Z} \to V$$
 such that $\varphi = \varphi_\mathbb{Z} \circ i$.

Examples of varieties $X_\mathbb{Z}$, where X is an affine variety over \mathbb{F}_1, include smooth toric varieties and the algebraic group-schemes GL_2 and GL_3.

1